Hronična imobilizacija, društvena izolacija i oksidativni stres

piše: Zvonko Džokić

Uvodna napomena

Tekst koji sledi nije nova oda uspešnosti svetskog projekta „Covid 19“. Pomenuti projekat je još u toku i trenutno prisilno zaokuplja pažnju tekućom vakcinacijom genetski još uvek nejasnim sadržajima, uz svakodnevnu i do sada neviđeno brutalnu medijsku i političku presiju koja se sprovodi 24/7h na skoro svakog pojedinca na planeti Zemlji i u skoro svakoj postojećoj državi.

Cilj ovog teksta je da ukaže na do sada dokazane naučne činjenice, za razliku od onih naučno nedokazanih, a uporno prezentovanih na početku i u toku „pandemije Covid 19“ u vezi etiologije i patogeneze iste, o izrazito razarajućim efektima hroničnog stresa putem nametanja prisilnog  dugotrajnog fizičkog, psihičkog i društvenog ograničenja (propraćenog kod ljudi u tekućoj kampanji dodatnom dozom konstantnog i enormnog zastrašivanja) primenjenih na živim organizmima iz kruga sisara. Čovek, valjda, i dalje spada u žive i takve organizme…?!

Ostaje na vama da povežete naučno dokazane činjenice koje slede u celinu sa pomenutim u prethodna dva teksta: „Projekat Covid 19 ili završna faza napada na Eros“ i „Doprinos projekta Covid 19 ubrzanoj shizofrenizaciji društva“. To će vam pomoći da još bolje shvatite glavne ciljeve iza-kulisne igre, koja se u samo jednom delu odigrava preko tekućeg projekta. Naravno, celini dodati i razarajuće efekte koje čine mediji plasiranjem postistina i lažnih vesti, gubitak posla, ratne igre, migracije, digitalna i virtuelna realnost u sklopu taktike pretvaranja preživelih ostataka ljudi u formu koja je u nastajanju – „Human 2.0“. A sve to na kraju povežite sa bazičnim tekstovima o stresu i stresnim poremećajima, isto tako na ovom sajtu.

Zašto baš sa stresom? Idemo dalje…

Hronični imobilizacijski stres

Na njemu se svakodnevno radi ni manje ni više nego već oko pedesetak godina u eksprimetnima koji se izvode na laboratorijskim životinjama. Isto tako dugo vremena se prate efekti imobilizacijskog stresa i kod primata. Vršena su, naravno daleko od očiju javnosti, prisilnim i nasilnim metodama i nad ljudima, obično od strane specijalnih vojnih i paravojnih „eksperta“. Ali, pošto su to obično činili i čine zaposlenici nosioca vrhunskih „demokratskih“ režima i „izuzetnih“ država (koje su obično izuzete i od odgovornosti pred međunarodnim insitucijama koje sude o krivičnoj odogovornosti o zločinima protiv čovečnosti), ovakve informacije su nedostupne ostalima, a svako njihovo pominjanje je unapred etiketirano kao neka od „teorija zavere“ ili da takve informacije ugrožavaju njihovu „nacionalnu bezbednost“. Pa još mogu da nastradaju i oni koji ih otkrivaju, što nam je već viđeno i uteranim strahom od brutalne kazne prihvaćeno „kao normalno“.

Elem, sumirano iskustvo iz ovog područja ukazuje na jasne dugoročne efekte koje izaziva ograničavajući, prisilni pristup slobodi telesnog kretanja i opštenja. To su poremećaji koji se pojavljuju u mnogim sferama, kako u biološkoj i mentalnoj, tako i u socijalnoj.

Hronični imobilizacijski stres deluje na biološku matricu, odosno na neuro-endokrino-imunološku osovinu organizma, kao i na mentalno fukcionisanje i ponašajne modele jedinki na kojima se on primenjuje. Preko ovih sistema se sprovodi sistematsko razaranje prethodno uspostavljenih psihosomatskih i psihosocijalnih mehanizama i funkcija, stvaraju se uslovi trajnog disbalansa i modifikacije celokupne strukture organizma koji je podložen takvom „tretmanu“.

Tako, na ogromnom broju slučajeva utvrđeno je da na ponašajnom nivou dovodi najpre do porasta agresivnog ponašanja, sklonosti impulsivnosti, povišenoj borbenosti i zauzimanja neprijateljskog stava ka okolini. Zatim sledi razvoj fobičnih mehanizama „izbegavanja“, instaliranje uslovljenog modela osećanja bespomoćnosti, stvaranje podloge brzog „kondicioniranja“ strahom, dužeg trajanja reakcije „paralize“ pri novim stresnim provokacijama itd. Na mentalnom planu je primećena najpre institucionalizacija anksioznosti, a zatim razvoj depresivnosti i anhedonije, stanja nemotivisanosti, bezvoljnosti i doživljaja besmislenosti. Na metaboličkom planu su primećeni tipični poremećaji vezani za „burn out“ sindrom, u vidu poremećenog metabolizma lipida i šećera, porast enzima koji ukazuju na visceralne poremećaje. Na endokrinom planu je praćeno poremećajem hormona koji je tipičan u početku za akutni stres a zatim za hronični iscrpljujući stres, sa redukcijom kortizola u završnoj fazi itd. Na imunološkom planu  je, shodno prethodnom, primećen povećan broj autoimunih i malignih poremećaja, teže zarastanje rana, porast nivoa i uticaja faktora upale itd. Na citološkom i histološkom planu u već više od dve decenije ispitivanja dokazuju se poremećaji neuroplasiticiteta mozga, uz demijelinizaciju bele mase i atrofiju ćelija sive u bitnim delovima „limbičkom korteksa“, posebno u zonama hipokampusa i prednjeg (frontalnog) režnja…!!?

Socijalna distanca kao bitan projektni dodatak

Ograničavanje komunikacije sa prirodnom oklinom, posebno sprečavanje društvene komunikacije, je dodatak ovakvim projektima, sa ciljem pojačanja efekata „Horničnog imobilizacijskog stresa“ (CISChronic Immobilisation Stress). I sami znate da je glavna društvena kazna – kazna zatvorom, a to je praktično kazna imobilizacionim stresom. Međutim najteža forma ove legalne kazne za učinjeno zlodelo je stavljanje u „samicu“. A to je, dragi moji, dodatak u vidu „socijalne distance“ u neprirodnoj, zatvorenoj sredini. E, to je već „Izolacioni stres“ (ISIsolation Stress). Još ako je samica bez prozora, svetla i bilo kakve pozitivne informacije…

Na šta vas ovo podseća?!

Eksperimentalne životinje su istraživači stavljali u različite varijante uslovljavanja i situacije, primenom na različitom broju jedinki, promenom dužine trajanja, menjanja okolinskih uslova u periodu izolacije i dr. Došlo se do sada do velikog broja bitnih podataka i zaključaka.

Za nas, u skladu sa ovim tekstom, najbitniji su oni koji potvrđuju pojačanje i ubrzanje efekata koji  su opisani u prethodnom poglavlju. „Plus“ ovome je utvrđivanje nepobitnih dokaza da jedinke koje su podvrgnute „socijalnoj distanci“, odnosno usamljivanju u toku njihovog izlaganja CIS-u, stradaju od mnogo težih formi od onih koji su preživeli imobilizaciju i izolaciju u grupi sa drugima(!?). Efekti koji proizilaze iz ovoga su po težini minimum ravni efektima koji se javljaju nakon preživljavanja teških psihičkih trauma, odnosno „Ozbiljnih životnih stresova“ (SLSSerious Life Stress)!

Zašto je to tako?!

Nalaženje objašnjenja pomenutih poremećaja i traženje odgovora na prethodno pitanje vode ka jedinstvenom razlogu. A taj je da se pri tim situacijama razvija stanje OKSIDATIVNOG STRESA!!

A, šta je to?

Oksidativni stres

Oksidativni stres je trenutno glavni uzrok oštećenja i smrti ljudskog organizma, ukoliko se izuzmu teške fizičke povrede i izrazite genetske malformacije!

Oksidativni stres nastaje u organizmu kada se pod dejstvom spoljašnjih (egzogenih) ili unutrašnjih (endogenih) faktora pokrene prekomerno oslobađanje slobodnih radikala – reaktivnih vrsta kiseonika (ROS – superoksid, peroksid, hidroksilni radikal, oksibenzon, hipohlorne molekule) i reaktivnih vrsta azota (RNS – azot monoksid, peroksinitrit). Ukoliko organizam ne uspe da ih izreguliše putem različitih kontrolnih mehanizama (preuzimanje, dismutacija, reparacija i dr.), ovakvi slobodni radikali izazivaju snažne reakcije i razaranja na nivou membrana, organela (lizizomi, meitohondrije, peroksizom) i jezgra ćelija, delujući na strukturu proteina, izazivajući i lipidnu perioksidaciju i oštećenja DNK! Ukoliko ovakvo patofiziološki stanje na nivou ćelija i tkiva organa potraje, dalje dolazi do razvoja širokog spektra poremećaja, bolesti i smrti.

Tako, neregulisani oksidativni stres razara zidove krvnih sudova i mišić srca, dovodeći do kardiovaskularnih bolesti – ateroskleroze, koronarne bolesti, hipertenzije, infarkta i dr. Spisak drugih bolesti koje nastaju produženim dejstvom oksidativnog stresa je skoro nepregledan: metabolički sindrom (hiperkortizolemija, hiperlipidemija, insulin rezistencija, zamašćenje unutrašnjih organa itd); diabetes tip 2 (više od 90 procenata dijabetičara strada od ove forme!?); oštećenja bubrega (tubula, fibroze i dr.); plućne bolesti (astma, opstruktivni bronhitis i dr.); hronične upale (konstantnim stimulacijom lučenja proinflamatornih citokina: IL-1b, TNFa, IL-6, il-19); autoimune bolesti (reumatodini artritis i dr.);  GIT – hronične upale creva (iritabilni i krvavi kolitis), oštećenja sluznice želuca, poremećaji funkcije i tkiva jetre i dr.; neurodegenerativne bolesti – Alchajmerova bolest, Parkinsonova bolest, makularna degeneracija i dr.; katarakta; ćelijske mutacije – mutageneza, karcinogeneza (maligniteti) i ubrzano starenje itd. itd…

Vratimo se sada smislu navođenja prethodnih podataka. Na početku ovog poglavlja naveo sam da uzročnici razvoja oksidativnog stresa mogu biti spoljašnji (egzogeni) i unutrašnji (endogeni). U spoljašnje spadaju radioaktivna zračenja, ultraljubičasto zračenje, toksini iz okolinskog zagađenja (teški metali, smog, duvanski dim, ugljen monoksid, azotni oksidi, benzen, hlor, ozon, formaldehid, rastvarači, boje, pesticidi, parfemi, lekovi, kozmetika, prerađevine hrane sa veštačkim aditivima, trans masti, lipidni peroksidi u mastima i dr.), hipoksija, hiperoksija, težak fizički napor i dr.

Unutrašnji (endogeni) faktori oksidativnog stresa se pojavljuju nakon razvoja snažnih unutrašnjih emocionalnih doživljaja i izrazitog psihosomatskog (vegetativnog) preživljavanja određenih spoljašnjih situacija u kojima se nalazi zatečena individua. Situacije u kojima je dokazano da se kao posledica takvog tipa preživljavanja razvija oksidativni stres na organskom nivou su psihičke traume, teži i dugotrajniji životni stresovi (SLS – serious life stress) i isrpljenje kapaciteta adaptacije – sindrom pregorevanja. I gle čuda, u ovom spektru je dokazano važno mesto koje zauzima faktor društvene izolacije!!

Socijalna distanca – zašto?

Vidimo sada da je termin „socijalna distanca“ pažljivo odabran, od strane majstora, u sklopu kampanje „Covid 19“. Iako to na početku nije bilo jasno i još uvek nije jasno mnogima zbog čega nije adekvatno zamenjen terminom „fizička distanca“. Socijalna distanca u sebi integriše izolacioni sa imobilizacionim stresom, u sprezi sa „lock down“ – om, odnosno zaključavanjem. U sprezi sa svakodnevnim zastrašivanjem (o psihodinamici, cilju i efektima medijskog i javnog nametanja svakodnevnog straha najvišeg intenziteta u sklopu ovog projekta – u nekom sledećem tekstu), a u vremenu koje beskrajno teče u ovakvom ambijentu, izuzetno je teško prosečnom čoveku današnjice izbeći dolazak u stanje doživljaja koje zatim „po službenoj dužnosti“ pokreće razvoj oksidativnog stresa u njegovom organizmu.

Tako dolazimo do tačke magičnog obrta koji trenutno proizvode dominantni alhemičari i primenjuju ga na svetsku populaciju koja zavisi od njih. Nematerijalnim putem proizvode materijalne posledice! Na ovo bi fizičari, uobičajene sveznalice, rekli: naravno, to je dokaz privremene transformacije energije u materiju, da bi se nakon alhemičarskog razaranja tela koje je poseduje vratila u slobodnu formu!?

Oksidativni stres i duhovna sloboda

Šta je, pa sad, to? I šta je ovome koji je to napisao?

Ostavljam mogućnost tumačenja uz nadrealna razmišljanja… Ukoliko je uopšte ostalo nešto od takvog potencijala u mozgu?

www.zvokodzokic.com

www.um.org.rs

Bibliografija

1. Abu-Qare A. Abou-Donia M. Increased 8-hydroxy-2-deoxyguanosine, a biomarker of oxidative DNA damage in rat urine following a single dermal dose of DEET (N,N-diethyl-m-toluamide), and permethrin, alone and in combination. Toxicol Lett. 2000;117:151–160. [PubMed] [Google Scholar]

2. Abu-Qare AW. Abou-Donia MB. Combined exposure to sarin and pyridostigmine bromide increased levels of rat urinary 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine, biomarkers of oxidative stress. Toxicol Lett. 2001;123:51–58. [PubMed] [Google Scholar]

3. Achen T. A Woman’s Guide to Divorce. Bloomington, IN: AuthorHouse; 2004. [Google Scholar]

4. Albrecht P. Lewerenz J. Dittmer S. Noack R. Maher P. Methner A. Mechanisms of oxidative glutamate toxicity: the glutamate/cystine antiporter system xc- as a neuroprotective drug target. CNS Neurol Disord Drug Targets. 2010;9:973–982. [PubMed] [Google Scholar]

5. Alzoubi KH. Khabour OF. Rashid BA. Damaj IM. Salah HA. The neuroprotective effect of vitamin E on chronic sleep deprivation-induced memory impairment: the role of oxidative stress. Behav Brain Res. 2012;226:205–210. [PubMed] [Google Scholar]

6. Anand SS. Babu PP. c-Jun N terminal kinases (JNK) are activated in the brain during the pathology of experimental cerebral malaria. Neurosci Lett. 2011;488:118–122. [PubMed] [Google Scholar]

7. Anantharam V. Lehrmann E. Kanthasamy A. Yang Y. Banerjee P. Becker KG. Freed WJ. Kanthasamy AG. Microarray analysis of oxidative stress regulated genes in mesencephalic dopaminergic neuronal cells: relevance to oxidative damage in Parkinson’s disease. Neurochem Int. 2007;50:834–847. [PMC free article] [PubMed] [Google Scholar]

8. Aschner M. Jiang GCT. Toxicity studies on depleted uranium in primary rat cortical neurons and in caenorhabditis elegans: what have we learned? J Toxicol Environ Health Part B. 2009;12:525–539. [PubMed] [Google Scholar]

9. Bánfi B. Malgrange B. Knisz J. Steger K. Dubois-Dauphin M. Krause K. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem. 2004;279:46065–46072. [PubMed] [Google Scholar]

10. Bedard K. Krause K. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313. [PubMed] [Google Scholar]

11. Behrens M. Ali S. Dao D. Lucero J. Shekhtman G. Quick K. Dugan L. Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science. 2007;318:1645–1647. [PubMed] [Google Scholar]

12. Bloch M. Peleg I. Koren D. Aner H. Klein E. Long-term effects of early parental loss due to divorce on the HPA axis. Hormones Behav. 2007;51:516–523. [PubMed] [Google Scholar]

13. Bras M. Milunovic V. Boban M. Mickovic V. Loncar Z. Gregurek R. Laco M. A quality of life in chronic combat related posttraumatic stress disorder—a study on Croatian War veterans. Coll Antropol. 2011;35:681–686. [PubMed] [Google Scholar]

14. Bremner J. Functional neuroanatomical correlates of traumatic stress revisited 7 years later, this time with data. Psychopharmacol Bull. 2003;37:6–25. [PubMed] [Google Scholar]

15. Bremner J. Brain imaging in anxiety disorders. Expert Rev Neurother. 2004;4:275–284. [PubMed] [Google Scholar]

16. Bremner J. Krystal J. Southwick S. Charney D. Functional neuroanatomical correlates of the effects of stress on memory. J Trauma Stress. 1995;8:527–553. [PubMed] [Google Scholar]

17. Bremner JD. Randall P. Vermetten E. Staib L. Bronen RA. Mazure C. Capelli S. McCarthy G. Innis RB. Charney DS. Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse—a preliminary report. Biol Psychiatry. 1997;41:23–32. [PMC free article] [PubMed] [Google Scholar]

18. Broberg K. Björk J. Paulsson K. Höglund M. Albin M. Constitutional short telomeres are strong genetic susceptibility markers for bladder cancer. Carcinogenesis. 2005;26:1263–1271. [PubMed] [Google Scholar]

19. Brown M. Naidoo N. The UPR and the anti-oxidant response: relevance to sleep and sleep loss. Mol Neurobiol. 2010;42:103–113. [PubMed] [Google Scholar]

20. Bruijn LI. Becher MW. Lee MK. Anderson KL. Jenkins NA. Copeland NG. Sisodia SS. Rothstein JD. Borchelt DR. Price DL. Cleveland DW. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron. 1997;18:327–338. [PubMed] [Google Scholar]

21. Bukhtoyarov OV. Samarin DM. Psychogenic carcinogenesis: carcinogenesis is without exogenic carcinogens. Med Hypotheses. 2009;73:531–536. [PubMed] [Google Scholar]

22. Caldji C. Tannenbaum B. Sharma S. Francis D. Plotsky PM. Meaney MJ. Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc Natl Acad Sci U S A. 1998;95:5335–5340. [PMC free article] [PubMed] [Google Scholar]

23. Campese VM. Ye S. Zhong H. Yanamadala V. Ye Z. Chiu J. Reactive oxygen species stimulate central and peripheral sympathetic nervous system activity. Am J Physiol Heart Circ Physiol. 2004;287:H695–H703. [PubMed] [Google Scholar]

24. Carlson M. Earls F. Psychological and neuroendocrinological sequelae of early social deprivation in institutionalized children in Romania. Ann N Y Acad Sci. 1997;807:419–428. [PubMed] [Google Scholar]

25. Carol G. A representational perspective of child abuse and prevention: internal working models of attachment and caregiving. Child Abuse Neglect. 1996;20:411–424. [PubMed] [Google Scholar]

26. Cavigelli S. Behavioural patterns associated with faecal cortisol levels in free-ranging female ring-tailed lemurs, Lemur catta. Anim Behav. 1999;57:935–944. [PubMed] [Google Scholar]

27. Ceccatelli S. Tamm C. Zhang Q. Chen M. Mechanisms and modulation of neural cell damage induced by oxidative stress. Physiol Behav. 2007;92:87–92. [PubMed] [Google Scholar]

28. Cicchetti D. Curtis W. Multilevel perspectives on pathways to resilient functioning. Dev Psychopathol. 2007;19:627–629. [PubMed] [Google Scholar]

29. Company HM. Boston, MA: Houghton Mifflin Company; 2010. The American Heritage Medical Dictionary. [Google Scholar]

30. Condino-Neto A. Whitney C. Newburger P. Dexamethasone but not indomethacin inhibits human phagocyte nicotinamide adenine dinucleotide phosphate oxidase activity by down-regulating expression of genes encoding oxidase components. J Immunol. 1998;161:4960–4967. [PubMed] [Google Scholar]

31. This reference has been deleted.

32. Cooley J. Lunte C. Detection of malondialdehyde in vivo using microdialysis sampling with CE-fluorescence. Electrophoresis. 2011;32:2994–2999. [PMC free article] [PubMed] [Google Scholar]

33. Costantini D. Marasco V. Møller A. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J Comp Physiol B. 2011;181:447–456. [PubMed] [Google Scholar]

34. D’Almeida Vn. Lobo LcL. Hipolide DbC. de Oliveira AC. Nobrega JN. Tufilk S. Sleep deprivation induces brain region-specific decreases in glutathione levels. NeuroReport. 1998;9:2853–2856. [PubMed] [Google Scholar]

35. Daniels WMU. Pietersen CY. Carstens ME. Stein DJ. Maternal separation in rats leads to anxiety-like behavior and a blunted ACTH response and altered neurotransmitter levels in response to a subsequent stressor. Metab Brain Dis. 2004;19:3–14. [PubMed] [Google Scholar]

36. Davidson RJ. Abercrombie H. Nitschke JB. Putnam K. Regional brain function, emotion and disorders of emotion. Curr Opin Neurobiol. 1999;9:228–234. [PubMed] [Google Scholar]

37. Davidson RJ. Lewis DA. Alloy LB. Amaral DG. Bush G. Cohen JD. Drevets WC. Farah MJ. Kagan J. McClelland JL. Nolen-Hoeksema S. Peterson BS. Neural and behavioral substrates of mood and mood regulation. Biol Psychiatry. 2002;52:478–502. [PubMed] [Google Scholar]

38. De Bellis MD. Keshavan MS. Shifflett H. Iyengar S. Beers SR. Hall J. Moritz G. Brain structures in pediatric maltreatment-related posttraumatic stress disorder: a sociodemographically matched study. Biol Psychiatry. 2002;52:1066–1078. [PubMed] [Google Scholar]

39. Dedovic K. Duchesne A. Andrews J. Engert V. Pruessner JC. The brain and the stress axis: the neural correlates of cortisol regulation in response to stress. NeuroImage. 2009;47:864–871. [PubMed] [Google Scholar]

40. Djordjevic J. Djordjevic A. Adzic M. Radojcic M. Chronic social isolation compromises the activity of both glutathione peroxidase and catalase in hippocampus of male wistar rats. Cell Mol Neurobiol. 2010;30:693–700. [PubMed] [Google Scholar]

41. Driessen M. Herrmann J. Stahl K. Zwaan M. Meier S. Hill A. Osterheider M. Petersen D. Magnetic resonance imaging volumes of the hippocampus and the amygdala in women with borderline personality disorder and early traumatization. Arch Gen Psychiatry. 2000;57:1115–1122. [PubMed] [Google Scholar]

42. Drissi R. Wu J. Hu Y. Bockhold C. Dome JS. Telomere shortening alters the kinetics of the DNA damage response after ionizing radiation in human cells. Cancer Prev Res. 2011;4:1973–1981. [PMC free article] [PubMed] [Google Scholar]

43. Epel ES. Blackburn EH. Lin J. Dhabhar FS. Adler NE. Morrow JD. Cawthon RM. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A. 2004;101:17312–17315. [PMC free article] [PubMed] [Google Scholar]

44. Everson CA. Laatsch CD. Hogg N. Antioxidant defense responses to sleep loss and sleep recovery. Am J Phys Regul Integr Comp Physiol. 2005;288:R374–R383. [PubMed] [Google Scholar]

45. Felitti VJ. Anda RF. Nordenberg D. Williamson DF. Spitz AM. Edwards V. Koss MP. Marks JS. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults: The Adverse Childhood Experiences (ACE) Study. Am J Prev Med. 1998;14:245–258. [PubMed] [Google Scholar]

46. Fernandes DC. Wosniak Jo. Pescatore LA. Bertoline MA. Liberman M. Laurindo FRM. Santos CX. Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems. Am J Physiol Cell Physiol. 2007;292:C413–C422. [PubMed] [Google Scholar]

47. Fink B. Laude K. McCann L. Doughan A. Harrison DG. Dikalov S. Detection of intracellular superoxide formation in endothelial cells and intact tissues using dihydroethidium and an HPLC-based assay. Am J Physiol Cell Physiol. 2004;287:C895–C902. [PubMed] [Google Scholar]

48. Fleshner M. Maier S. Lyons D. Raskind M. The neurobiology of the stress-resistant brain. Stress. 2011;14:498–502. [PMC free article] [PubMed] [Google Scholar]

49. Francis DD. Champagne FA. Liu D. Meaney MJ. Maternal care, gene expression, and the development of individual differences in stress reactivity. Ann N Y Acad Sci. 1999;896:66–84. [PubMed] [Google Scholar]

50. Fullerton C. Ursano R. Wang L. Acute stress disorder, posttraumatic stress disorder, and depression in disaster or rescue workers. Am J Psychiatry. 2004;161:1370–1376. [PubMed] [Google Scholar]

51. Geyer MA. Ellenbroek B. Animal behavior models of the mechanisms underlying antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:1071–1079. [PubMed] [Google Scholar]

52. Gillespie C. Phifer J. Bradley B. Ressler K. Risk and resilience: genetic and environmental influences on development of the stress response. Depress Anxiety. 2009;26:984–992. [PMC free article] [PubMed] [Google Scholar]

53. Giustarini D. Dalle-Donne I. Tsikas D. Rossi R. Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci. 2009;46:241–281. [PubMed] [Google Scholar]

54. Golier JA. Caramanica K. Yehuda R. Neuroendocrine response to CRF stimulation in veterans with and without PTSD in consideration of war zone era. Psychoneuroendocrinology. 2012;37:350–357. [PubMed] [Google Scholar]

55. Gopalakrishna R. Chen Z-H. Gundimeda U. Selenocompounds induce a redox modulation of protein kinase C in the cell, compartmentally independent from cytosolic glutathione: its role in inhibition of tumor promotion. Arch Biochem Biophys. 1997;348:37–48. [PubMed] [Google Scholar]

56. Gopalakrishnan A. Ji L. Cirelli C. Sleep deprivation and cellular responses to oxidative stress. Sleep. 2004;27:27–35. [PubMed] [Google Scholar]

57. Gotoh Y. Cooper J. Reactive oxygen species- and dimerization-induced activation of apoptosis signal-regulating kinase 1 in tumor necrosis factor-alpha signal transduction. J Biol Chem. 1998;273:17477–17482. [PubMed] [Google Scholar]

58. Gourion D. Events of life and links with severe depression at different ages. Encephale. 2009;35:250–256. [PubMed] [Google Scholar]

59. Graves L. Heller E. Pack A. Abel T. Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn Mem. 2003;10:168–176. [PMC free article] [PubMed] [Google Scholar]

60. Grienberger H. Pillai D. Schlachetzki F. Gruber M. Dittmar M. Detection of free radicals by isolated perfusion of the rat brain following hemorrhagic stroke: a novel approach to cerebrovascular biomarker research. Exp Brain Res. 2010;206:311–317. [PubMed] [Google Scholar]

61. Gu Y. Dee C. Shen J. Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability. Front Biosci (Schol Ed) 2011;3:1216–1231. [PubMed] [Google Scholar]

62. Guan Z. Peng X. Fang J. Sleep deprivation impairs spatial memory and decreases extracellular signal-regulated kinase phosphorylation in the hippocampus. Brain Res. 2004;1018:38–47. [PubMed] [Google Scholar]

63. Gunnar MR. Donzella B. Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology. 2002;27:199–220. [PubMed] [Google Scholar]

64. Gurvits TV. Shenton ME. Hokama H. Ohta H. Lasko NB. Gilbertson MW. Orr SP. Kikinis R. Jolesz FA. McCarley RW. Pitman RK. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol Psychiatry. 1996;40:1091–1099. [PMC free article] [PubMed] [Google Scholar]

65. Guzmán-Marín R. Suntsova N. Stewart DR. Gong H. Szymusiak R. McGinty D. Sleep deprivation reduces proliferation of cells in the dentate gyrus of the hippocampus in rats. J Physiol. 2003;549:563–571. [PMC free article] [PubMed] [Google Scholar]

66. Hall DJ. Han S-H. Chepetan A. Inui EG. Rogers M. Dugan LL. Dynamic optical imaging of metabolic and NADPH oxidase-derived superoxide in live mouse brain using fluorescence lifetime unmixing. J Cereb Blood Flow Metab. 2012;32:23–32. [PMC free article] [PubMed] [Google Scholar]

67. Harte M. Powell S. Swerdlow N. Geyer M. Reynolds G. Deficits in parvalbumin and calbindin immunoreactive cells in the hippocampus of isolation reared rats. J Neural Transm. 2007;114:893–898. [PubMed] [Google Scholar]

68. Hawkley L. Burleson M. Berntson G. Cacioppo J. Loneliness in everyday life: cardiovascular activity, psychosocial context, and health behaviors. J Pers Soc Psychol. 2003;85:105–120. [PubMed] [Google Scholar]

69. Herman JP. Figueiredo H. Mueller NK. Ulrich-Lai Y. Ostrander MM. Choi DC. Cullinan WE. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamic-pituitary-adrenocortical responsiveness. Front Neuroendocrinol. 2003;24:151–180. [PubMed] [Google Scholar]

70. Herrman H. Stewart D. Diaz-Granados N. Berger E. Jackson B. Yuen T. What is resilience? Can J Psychiatry. 2011;56:258–265. [PubMed] [Google Scholar]

71. Heumüller S. Wind S. Barbosa-Sicard E. Schmidt HHHW. Busse R. Schröder K. Brandes RP. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension. 2008;51:211–217. [PubMed] [Google Scholar]

72. Hoge CW. McGurk D. Thomas JL. Cox AL. Engel CC. Castro CA. Mild traumatic brain injury in U.S. soldiers returning from Iraq. N Engl J Med. 2008;358:453–463. [PubMed] [Google Scholar]

73. Hordijk PL. Regulation of NADPH oxidases: the role of Rac proteins. Circ Res. 2006;98:453–462. [PubMed] [Google Scholar]

74. Houben JMJ. Moonen HJJ. van Schooten FJ. Hageman GJ. Telomere length assessment: biomarker of chronic oxidative stress? Free Radic Biol Med. 2008;44:235–246. [PubMed] [Google Scholar]

75. Hunt N. McHale S. Psychosocial aspects of andrologic disease. Endocrinol Metab Clin North Am. 2007;36:521–531. [PubMed] [Google Scholar]

76. Huo Y. Rangarajan P. Ling E. Dheen S. Dexamethasone inhibits the Nox-dependent ROS production via suppression of MKP-1-dependent MAPK pathways in activated microglia. BMC Neurosci. 2011;12:49. [PMC free article] [PubMed] [Google Scholar]

77. Husain K. Somani S. Persistent/delayed toxic effects of low-dose sarin and pyridostigmine under physical stress (exercise) in mice. Indian J Physiol Pharmacol. 2004;48:150–164. [PubMed] [Google Scholar]

78. Ignacchiti M. Sesti-Costa R. Marchi L. Chedraoui-Silva S. Mantovani B. Effect of academic psychological stress in post-graduate students: the modulatory role of cortisol on superoxide release by neutrophils. Stress. 2011;14:290–300. [PubMed] [Google Scholar]

79. Infanger D. Sharma R. Davisson R. NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal. 2006;8:1583–1596. [PubMed] [Google Scholar]

80. Islam T. Urman R. Gauderman WJ. Milam J. Lurmann F. Shankardass K. Avol E. Gilliland F. McConnell R. Parental stress increases the detrimental effect of traffic exposure on children’s lung function. Am J Respir Crit Care Med. 2011;184:822–827. [PMC free article] [PubMed] [Google Scholar]

81. Jiang F. Zhang Y. Dusting G. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev. 2011;63:218–242. [PubMed] [Google Scholar]

82. Joseph S. Linley PA. Growth following adversity: theoretical perspectives and implications for clinical practice. Clin Psychol Rev. 2006;26:1041–1053. [PubMed] [Google Scholar]

83. Karelina K. DeVries AC. Modeling social influences on human health. Psychosom Med. 2011;73:67–74. [PMC free article] [PubMed] [Google Scholar]

84. Kawakami-Mori F. Shimosawa T. Mu SW H. Ogura S. Yatomi Y. Fujita T. NADPH oxidase-mediated Rac1 GTP activity is necessary for non-genomic actions of the mineralcorticoid receptor in the CA1 region of the rat hippocampus. Am J Physiol Endocrinol Metab. 2012;302:E425–E432. [PubMed] [Google Scholar]

85. Kawanishi S. Oikawa S. Mechanism of telomere shortening by oxidative stress. Ann N Y Acad Sci. 2004;1019:278–284. [PubMed] [Google Scholar]

86. Khan W. Dechkovskaia A. Herrick E. Jones K. Abou-Donia M. Acute sarin exposure causes differential regulation of choline acetyltransferase, acetylcholinesterase, and acetylcholine receptors in the central nervous system of the rat. Toxicol Sci. 2000;57:112–120. [PubMed] [Google Scholar]

87. Kiecolt-Glaser J. Bane C. Glaser R. Malarkey W. Love, marriage, and divorce: newlyweds’ stress hormones foreshadow relationship changes. J Consult Clin Psychol. 2003;71:176–188. [PubMed] [Google Scholar]

88. Kocalevent R. Hinz A. Brähler E. Klapp B. Determinants of fatigue and stress. BMC Res Notes. 2011;4:238. [PMC free article] [PubMed] [Google Scholar]

89. Kozorovitskiy Y. Gould E. Dominance hierarchy influences adult neurogenesis in the dentate gyrus. J Neurosci. 2004;24:6755–6759. [PMC free article] [PubMed] [Google Scholar]

90. Krause K. Aging: A revisited theory based on free radicals generated by NOX family NADPH oxidases. Exp Gerontol. 2007;42:256–262. [PubMed] [Google Scholar]

91. Kyriakis J. Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81:807–869. [PubMed] [Google Scholar]

92. Ladd CO. Thrivikraman KV. Huot RL. Plotsky PM. Differential neuroendocrine responses to chronic variable stress in adult Long Evans rats exposed to handling-maternal separation as neonates. Psychoneuroendocrinology. 2005;30:520–533. [PubMed] [Google Scholar]

93. Langner T. Life Stress and Mental Health: II. The Midtown Manhattan Study. Oxford, England: Free Press Glencoe; 1963. [Google Scholar]

94. Lapiz M. Fulford A. Muchimapura S. Mason R. Parker T. Marsden C. Influence of postweaning social isolation in the rat on brain development, conditioned behavior, and neurotransmission. Neurosci Behav Physiol. 2003;33:13–29. [PubMed] [Google Scholar]

95. Leng A. Feldon J. Ferger B. Long-term social isolation and medial prefrontal cortex: dopaminergic and cholinergic neurotransmission. Pharmacol Biochem Behav. 2004;77:371–379. [PubMed] [Google Scholar]

96. Lestaevel P. Romero E. Dhieux B. Ben Soussan H. Berradi H. Dublineau I. Voisin P. Gourmelon P. Different pattern of brain pro-/anti-oxidant activity between depleted and enriched uranium in chronically exposed rats. Toxicology. 2009;258:1–9. [PubMed] [Google Scholar]

97. Levine A. Worrell TR. Zimnisky R. Schmauss C. Early life stress triggers sustained changes in histone deacetylase expression and histone H4 modifications that alter responsiveness to adolescent antidepressant treatment. Neurobiol Dis. 2012;45:488–498. [PMC free article] [PubMed] [Google Scholar]

98. Li B. Mahan CM. Kang HK. Eisen SA. Engel CC. Longitudinal Health Study of US 1991 Gulf War Veterans: changes in health status at 10-year follow-up. Am J Epidemiol. 2011;174:761–768. [PubMed] [Google Scholar]

99. Li X. Spence JS. Buhner DM. Hart J. Cullum CM. Biggs MM. Hester AL. Odegard TN. Carmack PS. Briggs RW. Haley RW. Hippocampal dysfunction in Gulf war veterans: investigation with ASL perfusion MR imaging and physostigmine challenge. Radiology. 2011;261:218–225. [PMC free article] [PubMed] [Google Scholar]

100. Linares Ma. Marin-Garcia P. Mendez Do. Puyet A. Diez A. Bautista JM. Proteomic approaches to identifying carbonylated proteins in brain tissue. J Proteome Res. 2011;10:1719–1727. [PubMed] [Google Scholar]

101. Linden S. Hess V. Jones E. The neurological manifestations of trauma: lessons from World War I. Eur Arch Psychiatry Clin Neurosci. 2012;262:253–264. [PMC free article] [PubMed] [Google Scholar]

102. Liu P. Aslan S. Li X. Buhner DM. Spence JS. Briggs RW. Haley RW. Lu H. Perfusion deficit to cholinergic challenge in veterans with Gulf war illness. Neurotoxicology. 2011;32:242–246. [PMC free article] [PubMed] [Google Scholar]

103. Lucassen PJ. Muller MB. Holsboer F. Bauer J. Holtrop A. Wouda J. Hoogendijk WJG. De Kloet ER. Swaab DF. Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am J Pathol. 2001;158:453–468. [PMC free article] [PubMed] [Google Scholar]

104. Lupien SJ. Maheu F. Tu M. Fiocco A. Schramek TE. The effects of stress and stress hormones on human cognition: implications for the field of brain and cognition. Brain Cogn. 2007;65:209–237. [PubMed] [Google Scholar]

105. Lyoo IK. Han MH. Cho DY. A brain MRI study in subjects with borderline personality disorder. J Affect Disord. 1998;50:235–243. [PubMed] [Google Scholar]

106. Magariños A. McEwen BS. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors. Neuroscience. 1995;69:83–88. [PubMed] [Google Scholar]

107. Magariños A. McEwen BS. Fluge G. Fuchs E. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci. 1996;16:3534–3540. [PMC free article] [PubMed] [Google Scholar]

108. Maghzal GJ. Stocker R. Improved analysis of hydroethidine and 2-hydroxyethidium by HPLC and electrochemical detection. Free Radic Biol Med. 2007;43:1095–1096. [PubMed] [Google Scholar]

109. Makino Y. Tanaka H. Dahlman-Wright K. Makino I. Modulation of glucocorticoid-inducible gene expression by metal ions. Mol Pharmacol. 1996;49:612–620. [PubMed] [Google Scholar]

110. Marsden CA. King MV. Fone KCF. Influence of social isolation in the rat on serotonergic function and memory—relevance to models of schizophrenia and the role of 5-HT6 receptors. Neuropharmacology. 2011;61:400–407. [PubMed] [Google Scholar]

111. Marumo T. Schini-Kerth V. Brandes R. Busse R. Glucocorticoids inhibit superoxide anion production and p22 phox mRNA expression in human aortic smooth muscle cells. Hypertension. 1998;32:1083–1088. [PubMed] [Google Scholar]

112. McEwen B. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87:873–904. [PubMed] [Google Scholar]

113. McGraw-Hill. Concise Dictionary of Modern Medicine. NewYork: McGraw-Hill Companies I; 2002. [Google Scholar]

114. McIntosh L. Sapolsky R. Glucocorticoids may enhance oxygen radical-mediated neurotoxicity. Neurotoxicology. 1996;17:873–882. [PubMed] [Google Scholar]

115. McKittrick C. Magariños A. Blanchard D. Blanchard R. McEwen B. Sakai R. Chronic social stress reduces dendritic arbors in CA3 of hippocampus and decreases binding to serotonin transporter sites. Synapse. 2000;36:85–94. [PubMed] [Google Scholar]

116. Miura T. Muraoka S. Ogiso T. Inhibition of lipid peroxidation by estradiol and 2-hydroxyestradiol. Steroids. 1996;61:379–383. [PubMed] [Google Scholar]

117. Mohanty P. Hamouda W. Garg R. Aljada A. Ghanim H. Dandona P. Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab. 2000;85:2970–2973. [PubMed] [Google Scholar]

118. Möller M. Du Preez JL. Emsley R. Harvey BH. Isolation rearing-induced deficits in sensorimotor gating and social interaction in rats are related to cortico-striatal oxidative stress, and reversed by sub-chronic clozapine administration. Eur Neuropsychopharmacol. 2011;21:471–483. [PubMed] [Google Scholar]

119. Morgan D. Grant K. Prioleau O. Nader S. Kaplan J. Nader M. Predictors of social status in cynomolgus monkeys (Macaca fascicularis) after group formation. Am J Primatol. 2000;52:115–131. [PubMed] [Google Scholar]

120. Morgane PJ. Mokler DJ. Galler JR. Effects of prenatal protein malnutrition on the hippocampal formation. Neurosci Biobehav Rev. 2002;26:471–483. [PubMed] [Google Scholar]

121. Nancy AN. Childhood parental loss and cortisol levels in adult men. Psychoneuroendocrinology. 2004;29:1012–1018. [PubMed] [Google Scholar]

122. Nguyen D. Alavi MV. Kim KY. Kang T. Scott RT. Noh YH. Lindsey JD. Wissinger B. Ellisman MH. Weinreb RN. Perkins GA. Ju WK. A new vicious cycle involving glutamate excitotoxicity, oxidative stress and mitochondrial dynamics. Cell Death Dis. 2011;2:e240. [PMC free article] [PubMed] [Google Scholar]

123. Oikawa S. Tada-Oikawa S. Kawanishi S. Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening. Biochemistry. 2001;40:4763–4768. [PubMed] [Google Scholar]

124. Okamoto K. Tanaka H. Ogawa H. Makino Y. Eguchi H. Hayashi S-i. Yoshikawa N. Poellinger L. Umesono K. Makino I. Redox-dependent regulation of nuclear import of the glucocorticoid receptor. J Biol Chem. 1999;274:10363–10371. [PubMed] [Google Scholar]

125. Pajovic S. Pejic S. Stojiljkovic V. Gavrilovic L. Dronjak S. Kanazir D. Alterations in hippocampal antioxidant enzyme activities and sympatho-adrenomedullary system of rats in response to different stress models. Physiol Res. 2006;55:453–460. [PubMed] [Google Scholar]

126. Pall ML. Common etiology of posttraumatic stress disorder, fibromyalgia, chronic fatigue syndrome and multiple chemical sensitivity via elevated nitric oxide/peroxynitrite. Med Hypotheses. 2001;57:139–145. [PubMed] [Google Scholar]

127. Pawate S. Shen Q. Fan F. Bhat NR. Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res. 2004;77:540–551. [PubMed] [Google Scholar]

128. Petersen S. Saretzki G. Zglinicki Tv. Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp Cell Res. 1998;239:152–160. [PubMed] [Google Scholar]

129. Pickering C. Gustafsson L. Cebere A. Nylander I. Liljequist S. Repeated maternal separation of male Wistar rats alters glutamate receptor expression in the hippocampus but not the prefrontal cortex. Brain Res. 2006;1099:101–108. [PubMed] [Google Scholar]

130. Pinheiro M. Ferraz-de-Paula V. Ribeiro A. Sakai M. Bernardi M. Palermo-Neto J. Long-term maternal separation differentially alters serum corticosterone levels and blood neutrophil activity in a/j and C57BL/6 mouse offspring. Neuroimmunomodulation. 2011;18:184–190. [PubMed] [Google Scholar]

131. Pirraglia P. Hampton J. Rosen A. Witt W. Psychological distress and trends in healthcare expenditures and outpatient healthcare. Am J Manag Care. 2011;17:319–328. [PMC free article] [PubMed] [Google Scholar]

132. Plotsky P. Meaney M. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res Mol Brain Res. 1993;18:195–200. [PubMed] [Google Scholar]

133. Plotsky PM. Thrivikraman KV. Nemeroff CB. Caldji C. Sharma S. Meaney MJ. Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring. Neuropsychopharmacology. 2005;30:2192–2204. [PubMed] [Google Scholar]

134. Pryce CR. Feldon J. Long-term neurobehavioural impact of the postnatal environment in rats: manipulations, effects and mediating mechanisms. Neurosci Biobehav Rev. 2003;27:57–71. [PubMed] [Google Scholar]

135. Ramanathan L. Gulyani S. Nienhuis R. Siegel JM. Sleep deprivation decreases superoxide dismutase activity in rat hippocampus and brainstem. NeuroReport. 2002;13:1387–1390. [PubMed] [Google Scholar]

136. Rasheed N. Ahmad A. Al-Sheeha M. Alghasham A. Palit G. Neuroprotective and anti-stress effect of A68930 in acute and chronic unpredictable stress model in rats. Neurosci Lett. 2011;504:151–155. [PubMed] [Google Scholar]

137. Rivarola MaAl. Suarez MM. Early maternal separation and chronic variable stress in adulthood changes the neural activity and the expression of glucocorticoid receptor in limbic structures. Int J Dev Neurosci. 2009;27:567–574. [PubMed] [Google Scholar]

138. Robbers S. van Oort F. Huizink A. Verhulst F. van Beijsterveldt C. Boomsma D. Bartels M. Childhood problem behavior and parental divorce: evidence for gene–environment interaction. Soc Psychiatry Psychiatr Epidemiol. 2012:1–10. [PMC free article] [PubMed] [Google Scholar]

139. Romans SE. Gendall KA. Martin JL. Mullen PE. Child sexual abuse and later disordered eating: a New Zealand epidemiological study. Int J Eating Disord. 2001;29:380–392. [PubMed] [Google Scholar]

140. Rosenfeld P. Wetmore JB. Levine S. Effects of repeated maternal separations on the adrenocortical response to stress of preweanling rats. Physiol Behav. 1992;52:787–791. [PubMed] [Google Scholar]

141. Rutter M. Psychological sequelae of brain damage in children. Am J Psychiatry. 1981;138:1533–1544. [PubMed] [Google Scholar]

142. Sapolsky R. Potential behavioral modification of glucocorticoid damage to the hippocampus. Behav Brain Res. 1993;57:175–182. [PubMed] [Google Scholar]

143. Sapolsky R. The influence of social hierarchy on primate health. Science. 2005;308:648–652. [PubMed] [Google Scholar]

144. Sapolsky RM. Is impaired neurogenesis relevant to the affective symptoms of depression? Biol Psychiatry. 2004;56:137–139. [PubMed] [Google Scholar]

145. Schen C. When mothers leave their children behind. Harv Rev Psychiatry. 2005;13:233–243. [PubMed] [Google Scholar]

146. Schiavone S. Sorce S. Dubois-Dauphin M. Jaquet V. Colaianna M. Zotti M. Cuomo V. Trabace L. Krause K. Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats. Biol Psychiatry. 2009;66:384–392. [PubMed] [Google Scholar]

147. Schwarzer R. The Role of Stressful Life Events. Wiley Online Library; 2001. [Google Scholar]

148. Selye H. A syndrome produced by diverse nocuous agents. Nature. 1936;138:32–33. [Google Scholar]

149. Serra M. Pisu M. Floris I. Biggio G. Social isolation-induced changes in the hypothalamic-pituitary-adrenal axis in the rat. Stress. 2005;8:259–264. [PubMed] [Google Scholar]

150. Serra M. Pisu MG. Floris I. Cara V. Purdy RH. Biggio G. Social isolation-induced increase in the sensitivity of rats to the steroidogenic effect of ethanol. J Neurochem. 2003;85:257–263. [PubMed] [Google Scholar]

151. Serra M. Pisu MG. Littera M. Papi G. Sanna E. Tuveri F. Usala L. Purdy RH. Biggio G. Social isolation-induced decreases in both the abundance of neuroactive steroids and GABAA receptor function in rat brain. J Neurochem. 2000;75:732–740. [PubMed] [Google Scholar]

152. Sheline Y. Gado M. Kraemer H. Untreated depression and hippocampal volume loss. Am J Psychiatry. 2003;160:1516–1518. [PubMed] [Google Scholar]

153. Sheline Y. Gado M. Price J. Amygdala core nuclei volumes are decreased in recurrent major depression. Neuroreport. 1998;9:2023–2028. [PubMed] [Google Scholar]

154. Shen Q. McQuilkin P. Newburger P. RNA-binding proteins that specifically recognize the selenocysteine insertion sequence of human cellular glutathione peroxidase mRNA. J Biol Chem. 1995;270:30448–30452. [PubMed] [Google Scholar]

155. Sorce S. Krause K-H. NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal. 2009;11:2481–2504. [PubMed] [Google Scholar]

156. Sorce S. Schiavone S. Tucci P. Colaianna M. Jaquet V. Cuomo V. Dubois-Dauphin M. Trabace L. Krause K-H. The NADPH oxidase NOX2 controls glutamate release: a novel mechanism involved in psychosis-like ketamine responses. J Neurosci. 2010;30:11317–11325. [PMC free article] [PubMed] [Google Scholar]

157. Ste-Marie L. Hazell AS. Bémeur C. Butterworth R. Montgomery J. Immunohistochemical detection of inducible nitric oxide synthase, nitrotyrosine and manganese superoxide dismutase following hyperglycemic focal cerebral ischemia. Brain Res. 2001;918:10–19. [PubMed] [Google Scholar]

158. Stein MB. Yehuda R. Koverola C. Hanna C. Enhanced dexamethasone suppression of plasma cortisol in adult women traumatized by childhood sexual abuse. Biol Psychiatry. 1997;42:680–686. [PubMed] [Google Scholar]

159. Stroebe W. Abakoumkin G. Stroebe M. Beyond depression: yearning for the loss of a loved one. Omega. 2010;61:85–101. [PubMed] [Google Scholar]

160. Süer C. Dolu N. Artis AS. Sahin L. Yilmaz A. Cetin A. The effects of long-term sleep deprivation on the long-term potentiation in the dentate gyrus and brain oxidation status in rats. Neurosci Res. 2011;70:71–77. [PubMed] [Google Scholar]

161. Sundaresan M. Yu Z. Ferrans V. Sulciner D. Gutkind J. Irani K. Goldschmidt-Clermont P. Finkel T. Regulation of reactive-oxygen-species generation in fibroblasts by Rac1. Biochem J. 1996;318:379–382. [PMC free article] [PubMed] [Google Scholar]

162. Sung Y-H. Shin M-S. Cho S. Baik H-H. Jin B-K. Chang H-K. Lee E-K. Kim C-J. Depression-like state in maternal rats induced by repeated separation of pups is accompanied by a decrease of cell proliferation and an increase of apoptosis in the hippocampus. Neurosci Lett. 2010;470:86–90. [PubMed] [Google Scholar]

163. Tamashiro KLK. Nguyen MMN. Sakai RR. Social stress: from rodents to primates. Front Neuroendocrinol. 2005;26:27–40. [PubMed] [Google Scholar]

164. Tanaka H. Makino Y. Okamoto K. Iida T. Yan K. Yoshikawa N. Redox regulation of the glucocorticoid receptor. Antioxid Redox Signal. 1999;1:403–423. [PubMed] [Google Scholar]

165. Tarullo AR. Gunnar MR. Child maltreatment and the developing HPA axis. Hormones Behav. 2006;50:632–639. [PubMed] [Google Scholar]

166. Taylor S. Stanek L. Ressler K. Huhman K. Differential brain-derived neurotrophic factor expression in limbic brain regions following social defeat of territorial aggression. Behav Neurosci. 2011;125:911–920. [PMC free article] [PubMed] [Google Scholar]

167. Tesler P. Thompson P. Collaborative Divorce: The Revolutionary New Way to Restructure Your Family, Resolve Legal Issues, and Move on with Your Life. NewYork: Regan Books, Harper Collins; 2006. [Google Scholar]

168. Tyrka AR. Price LH. Kao H-T. Porton B. Marsella SA. Carpenter LL. Childhood maltreatment and telomere shortening: preliminary support for an effect of early stress on cellular aging. Biol Psychiatry. 2010;67:531–534. [PMC free article] [PubMed] [Google Scholar]

169. Umeki S. Soejima R. Hydrocortisone inhibits the respiratory burst oxidase from human neutrophils in whole-cell and cell-free systems. Biochim Biophys Acta. 1990;1052:211–215. [PubMed] [Google Scholar]

170. Uysal N. Gonenc S. Acikgoz O. Pekçetin C. Kayatekin BM. Sonmez A. Semin I. Age-dependent effects of maternal deprivation on oxidative stress in infant rat brain. Neurosci Lett. 2005;384:98–101. [PubMed] [Google Scholar]

171. Vallet P. Charnay Y. Steger K. Ogier-Denis E. Kovari E. Herrmann F. Michel JP. Szanto I. Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience. 2005;132:233–238. [PubMed] [Google Scholar]

172. Vazquez DM. Eskandari R. Phelka A. Lopez JF. Impact of maternal deprivation on brain corticotropin-releasing hormone circuits: prevention of CRH receptor-2 mRNA changes by desipramine treatment. Neuropsychopharmacology. 2003;28:898–909. [PubMed] [Google Scholar]

173. Vazquez DM. Lopez JF. Van Hoers H. Watson SJ. Levine S. Maternal deprivation regulates serotonin 1A and 2A receptors in the infant rat. Brain Res. 2000;855:76–82. [PubMed] [Google Scholar]

174. Violi F. Sanguigni V. Carnevale R. Plebani A. Rossi P. Finocchi A. Pignata C. De Mattia D. Martire B. Pietrogrande M. Martino S. Gambineri E. Soresina A. Pignatelli P. Martino F. Basili S. Loffredo L. Hereditary deficiency of gp91phox is associated with enhanced arterial dilatation results of a multicenter study. Vasc Med. 2009;120:1616–1622. [PubMed] [Google Scholar]

175. von Zglinicki T. Martin-Ruiz C. Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med. 2005;5:197–203. [PubMed] [Google Scholar]

176. Wei L. Simen A. Mane S. Kaffman A. Early life stress inhibits expression of a novel innate immune pathway in the developing hippocampus. Neuropsychopharmacology. 2012;37:567–580. [PMC free article] [PubMed] [Google Scholar]

177. Weiner M. Meyerhoff D. Neylan T. Hlavin J. Ramage E. Marmar C. Truran D. Chu P. Kornak J. Furlong C. McCarthy C. The relationship between Gulf War illness, brain N-acetylaspartate, and post-traumatic stress disorder. Mil Med. 2011;176:896–902. [PMC free article] [PubMed] [Google Scholar]

178. Weiss I. Feldon J. Environmental animal models for sensorimotor gating deficiencies in schizophrenia: a review. Psychopharmacology (Berl) 2001;156:305–326. [PubMed] [Google Scholar]

179. Wilber AA. Wellman CL. Neonatal maternal separation alters the development of glucocorticoid receptor expression in the interpositus nucleus of the cerebellum. Int J Dev Neurosci. 2009;27:649–654. [PubMed] [Google Scholar]

180. Wilson DR. Health consequences of childhood sexual abuse. Perspect Psychiatr Care. 2010;46:56–64. [PubMed] [Google Scholar]

181. Woolley CS. Gould E. McEwen BS. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res. 1990;531:225–231. [PubMed] [Google Scholar]

182. You J. Yun S. Nam K. Kang C. Won R. Lee E. Mechanism of glucocorticoid-induced oxidative stress in rat hippocampal slice cultures. Can J Physiol Pharmacol. 2009;87:440–447. [PubMed] [Google Scholar]

183. Zlotnick C. Mattia J. Zimmerman M. Clinical features of survivors of sexual abuse with major depression. Child Abuse Neglect. 2001;25:357–367. [PubMed] [Google Scholar]

&

1. Harman D. Aging–a theory based on free-radical and radiation-chemistry. J Gerontol. 1956;11:298–300. doi: 10.1093/geronj/11.3.298. [PubMed] [CrossRef] [Google Scholar]

2. McCord JM, Fridovich I. Superoxide dismutase an enzymic function for erythrocuprein hemocuprein. J Biol Chem. 1969;244:6049–6055. [PubMed] [Google Scholar]

3. Mittal CK, Murad F. Activation of guanylate cyclase by superoxidedismutase and hydroxyl radical-physiological regulator of guanosine 3’, 5’-monophosphate formation. Proc Natl Acad Sci USA. 1977;74:4360–4364. doi: 10.1073/pnas.74.10.4360. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Halliwell B, Gutteridge JM. Free radicals in biology and medicine. 2. New York: Oxford University Press; 1993. [Google Scholar]

5. Kehre JB, Smith CV. Free radicals in biology: sources, reactivates and roles in the etiology of human diseases. In: Frei B, editor. Natural antioxidants in human health and disease. Orlando: Academic Press; 1994. pp. 25–62. [Google Scholar]

6. Masahiro I, Shinya A, Nagata S, Miyata M, Hiroshi K. Relationships between perceived workload, stress and oxidative DNA damage. Int Arch Occup Environ Health. 2001;74:153–157. doi: 10.1007/s004200000209. [PubMed] [CrossRef] [Google Scholar]

7. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telsar J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001. [PubMed] [CrossRef] [Google Scholar]

8. Davies KJA, ed. Oxidative damage and repair: introduction and overview. In: Oxidative damage and repair. Chemical, biological and medical aspects. Pergamon Press, New York; 1991. pp 341–354.

9. Fridovich I. The biology of oxygen radicals. Science. 1978;201:875–880. doi: 10.1126/science.210504. [PubMed] [CrossRef] [Google Scholar]

10. Teebor GW, Boorstein RJ, Cadet J. The repairability of oxidative free radical mediated damage to DNA: a review. Int J Radiat Biol. 1988;54:131–150. doi: 10.1080/09553008814551591. [PubMed] [CrossRef] [Google Scholar]

11. Radak Z, Lee K, Choi W, Sunoo S, Kizaki T, Oh-Ishi S, Sizuki K, Taniguchi N, Ohno H, Asano K. Oxidative stress induced by intermittent exposure at a simulated altitude of 4000 m decreases mitochondrial superoxide dismutase content in soleus muscle of rats. Eur J Appl Physiol. 1994;69:392–395. doi: 10.1007/BF00865401. [PubMed] [CrossRef] [Google Scholar]

12. Tibor B, Radak Z. High altitude and free radicals (review article) J Sports Sci Med. 2004;3:64–69. [PMC free article] [PubMed] [Google Scholar]

13. Davidovic V, Djokic I, Petrovic N, Durasevic S, Cvijic G. Activity of antioxidant enzymes in rat skeletal muscle and brown fat: effect of cold and propranolol. J Therm Biol. 1999;24:385–389. doi: 10.1016/S0306-4565(99)00044-3. [CrossRef] [Google Scholar]

14. Bhaumik G, Srivastava KK, Selvamurthy W. The role of free radicals in cold injuries. Int J Biometeorol. 1995;38:171–175. doi: 10.1007/BF01245384. [PubMed] [CrossRef] [Google Scholar]

15. Flanagan SW, Moselev PL, Buettner GR. Increased flux of free radicals in cells subjected to hyperthermia: detection by electron paramagnetic resonance spin trapping. FEBS Lett. 1998;431:285–286. doi: 10.1016/S0014-5793(98)00779-0. [PubMed] [CrossRef] [Google Scholar]

16. Paul C, Teng S, Saunders PTK. A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biol Reprod. 2009;80:5913–5919. doi: 10.1095/biolreprod.108.071779. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Liu J, Wang X, Shigenaga MK, et al. Immobilization stress causes oxidative damage to lipid, protein and DNA in the brain of rats. FASEB J. 1996;10:1532–1538. [PubMed] [Google Scholar]

18. Kondo H, Miura M, Nakagaki I, Sasaki S, Itokawa Y. Trace element movement and oxidative stress in skeletal muscle atrophied by immobilization. Am J Physiol. 1992;262:E583–E590. [PubMed] [Google Scholar]

19. Webster Marketon JI, Glaser R. Stress hormones and immune function. Cell Immunol. 2008;252:16–26. doi: 10.1016/j.cellimm.2007.09.006. [PubMed] [CrossRef] [Google Scholar]

20. Dhabhar FS, Miller AH, McEwen BS, Spencer RL. Effects of stress on immune cell distribution-dynamics and hormonal mechanisms. J Immunol. 1995;154:5511–5527. [PubMed] [Google Scholar]

21. Dhabhar FS. Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology. NeuroImmunoModulation. 2009;16:300–317. doi: 10.1159/000216188. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Dinarello CA. Pro-inflammatory cytokines. Chest. 2000;118:503–509. doi: 10.1378/chest.118.2.503. [PubMed] [CrossRef] [Google Scholar]

23. Gerald S, Christophe B, Luc MJ, Luc T. Relationship between stress, inflammation and metabolism. Curr Opin Clin Nutr Metab Care. 2004;7:169–173. doi: 10.1097/00075197-200403000-00011. [PubMed] [CrossRef] [Google Scholar]

24. Jin K. Modern biological theories of aging. Aging Dis. 2010;1:72–74. [PMC free article] [PubMed] [Google Scholar]

25. Von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27:339–344. doi: 10.1016/S0968-0004(02)02110-2. [PubMed] [CrossRef] [Google Scholar]

26. MacNee W. Oxidative stress and lung inflammation in airways disease. Eur J Pharmacol. 2001;429:195–207. doi: 10.1016/S0014-2999(01)01320-6. [PubMed] [CrossRef] [Google Scholar]

27. Black PH, Garbutt LD. Stress, inflammation and cardiovascular disease. J Psychosom Res. 2002;52:1–23. doi: 10.1016/S0022-3999(01)00302-6. [PubMed] [CrossRef] [Google Scholar]

28. Yudkin JS, Kumari M, Humphries SE, Ali VM. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Athersclerosis. 2000;148:209–214. doi: 10.1016/S0021-9150(99)00463-3. [PubMed] [CrossRef] [Google Scholar]

29. Vaziri ND, Bernardo RI. Mechanism of disease and inflammation in the pathogenesis of hyper tension. Nat Rev Nephrol. 2006;2:582–593. [PubMed] [Google Scholar]

30. Oberg BP, McMenamin E, Lucas FL, McMonagle JM, Ikizler TA, Jonathan M. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 2004;65:1009–10016. doi: 10.1111/j.1523-1755.2004.00465.x. [PubMed] [CrossRef] [Google Scholar]

31. Farthing MJ. Irritable bowel, irritable body or irritable brain? Br Med J. 1995;310:171–175. doi: 10.1136/bmj.310.6973.171. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Firestein GS, Echeverri F, Yeo M, Zvaifler NJ, Green DR. Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proc Natl Acad Sci USA. 1997;94:10895–10900. doi: 10.1073/pnas.94.20.10895. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Paul PT, Nathan JZ, Douglas RG, Gary SF. Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol Today. 2000;21:78–82. doi: 10.1016/S0167-5699(99)01552-2. [PubMed] [CrossRef] [Google Scholar]

34. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telsar J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001. [PubMed] [CrossRef] [Google Scholar]

35. Stayner LT, Dankovic DA, Lemen RA. Occupational exposure to chrysotile asbestos and cancer risk: A review of the amphibole hypothesis. Am J Public Health. 1996;86:179–186. doi: 10.2105/AJPH.86.2.179. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Santos FW, Zeni G, Rocha JBT, Weis SN, Fachinetto JM, Favero AM, et al. Diphenyl diselenide reverses cadmium-induced oxidative damage on mice tissues. Chem Biol Interact. 2005;151:159–165. doi: 10.1016/j.cbi.2005.01.001. [PubMed] [CrossRef] [Google Scholar]

37. Roy P, Saha A. Metabolism and toxicity of arsenic: a human carcinogen. Curr Sci. 2002;82:38–45. [Google Scholar]

38. Loft S, Poulsen HE. Cancer risk and oxidative DNA damage in man. J Mol Med. 1996;74:297–312. doi: 10.1007/BF00207507. [PubMed] [CrossRef] [Google Scholar]

Ostavite odgovor

Popunite detalje ispod ili pritisnite na ikonicu da biste se prijavili:

WordPress.com logo

Komentarišete koristeći svoj WordPress.com nalog. Odjavi se /  Promeni )

Fejsbukova fotografija

Komentarišete koristeći svoj Facebook nalog. Odjavi se /  Promeni )

Povezivanje sa %s